- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Agarwal, Anuradha_Murthy (1)
-
Duessel, Christian (1)
-
Kimerling, Lionel_C (1)
-
Serna-Otalvaro, Samuel_F (1)
-
Weninger, Drew_Michael (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The transition towards designs which co-package electronic and photonic die together in data center switch packages has created a scaling path to Petabyte per second (Pbps) input/output (I/O) in such systems. In a co-packaged design, the scaling of bandwidth, cost, and energy will be governed by the number of optical I/O channels and the data rate per channel. While optical communication provide an opportunity to exploit wavelength division multiplexing (WDM) to scale data rate, the limited 127 µm pitch of V-groove based single mode fiber arrays and the use of active alignment and bonding for their packaging present challenges to scaling the number of optical channels. Flip-chip optical couplers which allow for low loss, broadband operation and automated passive assembly represent a solution for continued scaling. In this paper, we propose a novel scheme to vertically couple between silicon based waveguides on separate chips using graded index (GRIN) couplers in combination with an evanescent coupler. Simulation results using a 3D Finite-Difference Time-Domain (FDTD) solver are presented, demonstrating coupling losses as low as 0.35 dB for a chip-to-chip gap of 11 µm; 1-dB vertical and lateral alignment tolerances of approximately 2.45 µm and ± 2.66 µm, respectively; and a possible 1-dB bandwidth of greater than 1500 nm. These results demonstrate the potential of our coupler as a universal interface in future co-packaged optics systems.more » « less
An official website of the United States government
